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Abstract. We study finite-size effects in the self-organized critical forest-fire model by numerically eval-
uating the tree density and the fire size distribution. The results show that this model does not display
the finite-size scaling seen in conventional critical systems. Rather, the system is composed of relatively
homogeneous patches of different tree densities, leading to two qualitatively different types of fires: those
that span an entire patch and those that do not. As the system size becomes smaller, the system contains
less patches, and finally becomes homogeneous, with large density fluctuations in time.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.70.Jk Critical
point phenomena – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

During the past years, systems which exhibit self-
organized criticality (SOC) have attracted much atten-
tion, since they might explain part of the abundance of
fractal structures in nature [1]. Their common features are
slow driving or energy input and rare dissipation events
which are instantaneous on the time scale of driving. In the
stationary state, the size distribution of dissipation events
obeys a power law, irrespective of initial conditions and
without the need to fine-tune parameters. Examples for
such systems are the sandpile model [1], the self-organized
critical forest fire model [2,3], the earthquake model by
Olami, Feder, and Christensen [4], and the Bak-Sneppen
evolution model [5]. Numerical as well as analytical studies
of those systems are usually based on the assumption that
their critical behaviour can be described in similar terms
as that of equilibrium critical systems. This assumption
is given a basis in [6], where it is suggested that SOC
systems can be mapped on conventional critical systems
by interchanging control and order parameters. Thus, the
Bak-Sneppen model can be mapped on a depinning prob-
lem [5]. However, it has been shown in [7] that the map-
ping suggested in [6] for the SOC forest-fire model does not
generate a system with a conventional critical point. In-
stead, the phase transition shows hysteresis effects and is
discontinuous when approached from above. Other uncon-
ventional features have also been seen in the SOC forest-
fire model, like the existence of more than one diverging
length scale [8,9], the absence of a spanning cluster im-
mediately beyond the critical point [8], and the depen-
dence of the large-scale behaviour on details of the model
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rules [9,10]. (For a review on the SOC forest-fire model,
see [13].) Other SOC systems show also unconventional
scaling behaviour. Thus, in the two-dimensional abelian
sandpile model finite-size scaling is violated [14], and the
critical exponents for the earthquake model by Olami,
Feder, and Christensen [4] appear to depend continuously
on the parameters. There is substantial need to better
understand the nature of the scaling behaviour of those
systems.

It is the purpose of this paper to shed some light on
the unconventional critical behaviour of the SOC forest-
fire model by studying its finite-size effects. We choose a
version of the model which is identical to the SOC forest-
fire model for system sizes much larger than the corre-
lation length, and we discuss the changes that occur in
the model as the system size is decreased below the cor-
relation length. We find that instead of displaying finite-
size scaling, small systems undergo a rearrangement from
a structure with patches of different density to a more
homogeneous structure with large density fluctuations in
time. We find also that, contrary to conventional critical
systems, small systems and small parts of large systems
differ in the probability distribution for the density and
in the fire-size distribution. We suggest that these results
can be explained by the fact that the system has two qual-
itatively different types of fires.

The outline of this paper is as follows: in Section 2,
we define the model that we used for studying finite-size
effects, and discuss briefly known results. Section 3 shows
computer simulation results for the fire-size distribution
and the tree density as the system size changes from values
larger than the correlation length to values much smaller
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than it. In the conclusion, we summarize and discuss our
findings.

2 The model

The version of the SOC forest-fire model studied in this
paper is defined on a square lattice with L2 sites. Each site
is either occupied (“tree”) or empty (“no tree”). At each
time step, the system is updated according to the follow-
ing rules: (i) “Burning”: a site in the system is chosen at
random (“struck by lightning”). If the site is occupied, the
whole cluster of occupied sites connected to this site (by
nearest-neighbour coupling) is removed from the system
(“burnt”), i.e., the occupied sites of that cluster turn to
empty sites. If the chosen site is empty, nothing happens.
(ii) “Tree growth”: we select randomly s0 ≡ pL2 sites from
the system and occupy those that are empty (possibly also
including sites which have become empty due to the re-
moval of the cluster). These sites are selected one after
another, allowing for the same site being selected more
than once during the same filling step. In principle, s0 can
therefore be larger than L2, however, in our simulations
we chose usually values smaller than L2.

For fixed s0 and very large system size L, these rules
are equivalent to having a lightning probability f = 1/L2

per site and time step, and a tree growth probability p,
and the model is identical to the original SOC forest-fire
model [2]. Because of this equivalence, which was first
pointed out by Grassberger [15] most numerical studies
of the SOC forest-fire model up to now were performed
using the above rules, which allow for fast and efficient
computer simulations. With the above rules, finite-size ef-
fects can also be studied very efficiently, as was suggested
in [9]. However, one has to keep in mind that the results
are somewhat different from those for the original model.
While in the original model lightning can strike the sys-
tem between the growth of any two trees, it can strike
the system in the present model only after growth step
(ii) is finished. This leads to density peaks in Figures 10
and 11 below that are not present in the original model.
However, our main conclusions are not affected by the par-
ticular choice of the dynamical rules, as will be discussed
further below.

Let us first summarize shortly the major numerical re-
sults for the case s0 � L2, as reported in the literature on
the SOC forest-fire model [3,15–17]. In this limit, only a
small number of trees grow at each time step (compared
to the total number of trees). After a transient time, a sta-
tionary state is reached where the tree density has only
small fluctuations around some average value ρ̄(s0) that
does not depend on L. Throughout this paper, we study
only stationary states and do not evaluate the initial tran-
sient behaviour. Since the mean number of trees s̄ burnt
during a fire must be identical to the mean number of
trees growing between two fires, we have the relation

s̄ = s0(1− ρ̄)/ρ̄. (1)

The leading finite-size corrections to this equation are of
order s0/L

2 and can be neglected in the case s0 � L2

which we are considering in this paragraph. As s0 in-
creases, the mean fire size increases also, and we approach
the critical point of the SOC forest-fire model, where the
mean tree density is given by ρ̄c ' 0.41. The correlation
length ξ is a measure for the radius of the largest tree clus-
ter and is related to s0 via ξ ∼ sν0 , with ν ≈ 0.58 in d = 2
dimensions. The size distribution of tree clusters near the
critical point is well-described by the scaling form

n(s) ' s−τC(s/smax), (2)

with a cutoff function C that is constant for small argu-
ments and decays exponentially fast when the argument is
considerably larger than 1. The cutoff cluster size smax is
related to the correlation length ξ via smax ∼ ξµ, with µ
being the fractal dimension of tree clusters, which is found
to be 1.95 [16] or 1.96 [3,11]. The value of the exponent τ
is approximately 2.14. The relation between smax and s0

is smax ∼ sλ0 , with λ = νµ ' 1.15 [3].
All these numerical findings agree well with conven-

tional scaling assumptions based on a single diverging
length scale. Analytical studies of the model, such as
mean-field theories [17–19] and renormalization group cal-
culations [20,21] are also based on conventional scaling
assumptions. Therefore, the violation of finite-size scal-
ing described in the following might appear surprising
to many readers. However, one must keep in mind that
the simulation data do not cover much more than one
decade in the correlation length ξ. The observed scaling
behaviour equation (2), together with the measured val-
ues of the critical exponents, do not necessarily indicate an
exact asymptotic scaling form, but may simply be a good
approximation to more complicated scaling, which works
well for the system sizes and parameter values studied in
simulations. A similar phenomenon is known for the sand-
pile model, where good scaling collapses for the avalanche
size distribution could be achieved in [22,23] and older pa-
pers, although it has been recently shown [14] that finite-
size scaling is violated and that the simple scaling ansatz
used for the data collapse is incorrect.

Figure 1 shows a snapshot of a system with a tree
density ρ̄ just below ρ̄c. One can distinguish regions of
different densities with a rather homogeneous tree distri-
bution within a region. These regions are obviously cre-
ated by a fire that burns down a cluster of high tree
density. After the fire, a burnt region is almost empty
and becomes slowly filled with trees according to the law
ρ̇ = p(1 − ρ). We call these regions of homogeneous tree
density “patches”, as we did in [25]. If lightning strikes
a tree in a patch of low density, it usually burns down a
small tree cluster. If it strikes a patch of a density larger
than the percolation threshold, it burns down a tree clus-
ter as large as the patch itself. This observation indicates
that there are two qualitatively different types of fires in
the system: those that span an entire patch, and those
that destroy a small percolation cluster within a patch of
a tree density below the percolation threshold. As we will
see below, this gives rise to the unusual finite-size proper-
ties of the model.

If the correlation length ξ is of the same order as or
larger than L, the behaviour sketched above is modified
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Fig. 1. Snapshot of the SOC forest-fire model for ρ̄ ' ρ̄c '
40.8% and L = 4096. Trees are black and empty sites are white.

due to finite-size effects. For not too small values of s0/L
2,

the tree density increases by a noticeable amount between
two fires, leading to large density fluctuations and to fires
that span the entire system. If the SOC forest-fire model
showed conventional critical behaviour, there would be a
single diverging length scale, namely the correlation length
ξ, which would be related to f/p or, equivalently, to s0,
via ξ ∼ (f/p)−ν or ξ ∼ sν0 . Finite-size effects would then
manifest themselves in a scaling form

n(s) ' s−τC(s/Lµ), (3)

for the size distribution of tree clusters. Furthermore, on
scales smaller than L and ξ, all measured quantities should
be indistinguishable from those measured in a small sec-
tion of an infinitely large critical system.

The following section presents simulation results that
show that none of these finite-size scaling assumptions is
satisfied for the SOC forest-fire model. In fact, the inva-
lidity of the assumption of a single diverging length scale
has already been shown in [9]. The invalidity of the sec-
ond assumption that measurements in small systems and
in small sections of large systems should give identical re-
sults, can be understood by considering for instance the
mean time interval between two fires. In a small subsys-
tem of linear size l of a large system with a correlation
length ξ � l, this is given by (p(1 − ρ̄c))−1. Just before
fire reaches the subsystem, its tree density is far above the
percolation threshold, and the spanning cluster of the sub-
system is part of a large tree cluster that extends far be-
yond the limits of the subsystem. Lightning usually strikes
this large cluster outside the subsystem, the time interval
between two lightning strokes within the subsystem be-
ing L2/l2, which diverges as L diverges. In contrast, fire

cannot enter a small system from outside, but the tree
density of a small system increases until lightning strikes
a tree within the system. According to our rules, time is
measured in units of the mean time interval between two
lightning strokes. On this time scale, the time between
two fires within a small system of linear size l is finite.
In contrast, the time interval between two fires within a
subsystem of size l of a much larger system is vanishingly
small compared to the time interval between two light-
ning strokes within the subsystem. All these arguments
are backed up and complemented by the numerical results
reported in the following.

3 Results of computer simulations

In this section we will present and explain data obtained
from about 300 runs of the model for various values of
s0 and L. Since many runs of the simulation were nec-
essary, we chose a cluster of workstations rather than a
“supercomputer”. The system size L varied between 10
and 2000 in these runs. We found that as finite-size effects
become more important, the system shows a transition be-
tween two qualitatively different types of behaviour which
we call critical behaviour and percolation-like behaviour.
The critical behaviour is is characterized by a good scaling
collapse of the fire size distribution and by large spatial
variations in the local tree density. The percolation-like
behaviour is characterized by large temporal fluctuations
in the global tree density, with a rather homogeneous tree
distribution within the system for any given time. Snap-
shots of the system therefore resemble percolation systems
where each site is occupied by a tree with a probability ρ.
(For an introduction to percolation theory, see e.g. [24].)
The following three subsections show how this transition
manifests itself in the mean tree density, the fire size dis-
tribution, and the probability distribution for the tree
density.

3.1 Lines of constant tree density

First, we measured the mean tree density

ρ̄ = (1/T )
T∑
t=1

ρ(t) (4)

in the system, averaged over a large number of T itera-
tions, for various values of L and s0. The density ρ(t) was
always evaluated after the refilling step (ii). Compared to
a model where trees grow at a rate ρ̇ = p(1− ρ), the den-
sity values in our model are somewhat larger when s0/L

2

is not very small. If, for instance, the density is increased
from ρ − ∆ρ to ρ during the refilling step (ii), the value
ρ enters the above sum, while an evaluation based on a
constant growth rate would give 1−∆ρ/ ln(1+∆ρ/(1−ρ))
instead of ρ.

It it not obvious what the relation between s0, L2 and
ρ̄ should be if we want to deduce it from an analogy with
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Fig. 2. Lines of constant mean tree density in a s0 vs. L2

plane. The bold solid line represents the separatrix between
the SOC and the percolation-like behaviour. The remaining
lines represent constant ρ̄ = 0.47, 0.455, 0.43, 0.42, 0.0403,
0.40, 0.35, 0.343 (from top to bottom). The line for ρ̄ = 0.40
is derived from interpolated results.

equilibrium critical systems. We have already mentioned
that the temporal fluctuations in ρ(t) become larger as
the ratio s0/L

2 increases. Similarly, temporal fluctuations
increase in a critical equilibrium system when the system
size becomes smaller. One might therefore expect that de-
creasing L at fixed s0 should drive the system toward the
critical point, where ρ̄ = ρ̄c ' 0.41. However, we have ar-
gued in the previous section that a given site burns down
more often in a large system without finite-size effects than
in a smaller system with finite-size effects that has the
same value of s0. From this, it follows that the mean tree
density increases with decreasing L, when s0 is fixed. In
the limit s0 � L2 it must go to one. From this point
of view, a system with sufficiently large finite-size effects
should rather be compared to an equilibrium system in
the ordered phase, for instance to a percolation system
beyond the percolation threshold. The analogue of s0 in
a percolation system is then the mean size of the clus-
ter that a given site belongs to, and it is proportional to
L2 beyond the percolation threshold [24]. Indeed, we find
that the mean size of fires becomes proportional to L2

when finite-size effects are strong (see below). However,
there is nevertheless a fundamental difference between a
percolation system beyond the percolation threshold and
our system with a density above ρc: In our model, a tree
cluster that spans the system and has a size proportional
to L2 occurs only rarely when the mean density is only
slightly above the critical density, while a percolation sys-
tem above the percolation threshold has always a system
spanning tree cluster.

In Figure 2, lines of constant mean tree density are
plotted on a double logarithmic scale in s0 and L2. This
figure shows that there are two qualitatively different re-
gions in the s0 vs. L2 plane, with a transition region be-
tween them. First, there is the region where there are no
finite-size effects, s0 � L2. In this region, the size of the

tree clusters is much smaller than the system size, and
the global density fluctuations are small. The mean tree
density of such a system is smaller than ρ̄c ≈ 0.41. For sys-
tems with small density fluctuations the probability that a
given empty site is filled with a tree during one time step,
is given by s0/L

2, and the probability that a given tree is
burnt by a fire is s0(1− ρ̄)/(ρ̄L2). Since both probabilities
decrease as 1/L2 with increasing L, dynamics of larger sys-
tems are slower than those of smaller systems. Apart from
this change of the characteristic time scales, the local dy-
namics is independent of L, and consequently correlation
functions and cluster size distributions are the same for
systems of different sizes (provided that L2 � s0). This
leads to the horizontal slope in the large L regime of the
curves for ρ̄ < ρ̄c in Figure 2.

The curves show deviations from the horizontal be-
haviour when L becomes as small as or smaller than the
correlation length ξ ∼ sν0 . These deviations occur in the
transition region where finite-size effects begin to become
noticeable. The dynamics changes from fires that are not
affected by the finite system size to a fire size distribution
that includes sometimes events of the order of the system
size. Fires of such a large size destroy the patchy structure
of the forest described earlier, and cause a more random
tree distribution.

In the second region, lines of constant mean density
are curves of constant s0/L

2. This feature can best be un-
derstood when considering the parameter range where s0

is of the order of L2 or above. In this range, the mean tree
density is much larger than ρ̄c, and the system contains
a spanning cluster after each filling. During the “burn-
ing” step, this cluster is removed with a finite probability,
leading to a large change in density in the system. When
a “finite” (i.e. not spanning) cluster is removed during
the “burning” step, the overall density hardly changes for
large L. The time series of the density is therefore deter-
mined almost completely by the filling events and by the
large burning events. Since the filling events fill a large
fraction of empty sites, and since large burning events
burn a large fraction of trees, the tree distribution within
the system is rather homogeneous. A snapshot of the sys-
tem at a given time looks therefore similar to a percolation
system with a density ρ(t). From percolation theory we
know that for a given density the fraction of trees sitting
in the spanning cluster is independent of L, and conse-
quently curves of constant large density are curves of con-
stant s0/L

2 in Figure 2. Even curves for smaller s0/L
2,

which correspond to densities only slightly above ρ̄c show
for sufficiently large L an asymptotic behaviour s0/L

2 =
const, with the constant vanishing at ρ̄c. The reason is
again that finite fires do not reduce the density of an in-
finitely large system, and that the system spanning fires
reduce the density by an amount that does not depend on
L, but only on the density itself.

Finally, the critical curve (for the density ρ̄ = ρ̄c '
0.41) is obtained from the condition

L ≈ ξ ∼ sν0 , with ν ' 0.58.

This curve is the separatrix between the two regions de-
scribed above and is indicated in Figure 2 by the bold line.
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Fig. 3. Scaling collapse of the fire size distribution for systems
with the parameters s0/L

2 = 0.001 and L = 1600, 800, 400,
200. The measured mean tree densities are ρ̄ = 0.40, 0.395,
0.38, 0.36. C is a suitable scaling constant for each curve.

As L decreases, more and more curves merge with the sep-
aratrix when their correlation length becomes comparable
to the system size.

3.2 The fire size distribution

Since lightning strikes each tree with the same probabil-
ity, the size distribution of fires is proportional to sn(s),
with n(s) being the size distribution of tree clusters. As
mentioned above, conventional scaling would imply a form
sn(s) ' s1−τC(s/sµν0 ) for the fire size distribution if the
correlation length ξ ∼ sν0 is smaller than the system size,
and a finite-size scaling form sn(s) ' s1−τC(s/Lµ) in the
opposite case. In both cases, one would obtain a scaling
collapse of the curves for different s0 or L.

Figure 3 shows the fire size distribution for parame-
ters such that ξ < L. While not perfect, the data collapse
is good and would not impose the conclusion that simple
scaling is violated. The bump near the end of the curves
indicates that the cutoff function C increases first with
increasing argument, before it shows the exponential de-
cay. This bump is believed to contain all the trees that
would sit in larger clusters if the system was exactly at
the critical point [15].

Figure 4 shows the fire size distribution for parameter
values such that the mean density is ten percent above its
critical value. As discussed in the previous subsection, sys-
tem spanning fires occur, and their size scales as L2. These
fires are responsible for the peaks in the fire size distribu-
tion. Similar peaks occur in equilibrium critical systems
in the ordered phase, for example in the cluster size dis-
tribution of a percolation system above the percolation
threshold. In a percolation system, the occurrence of such
peaks implies that the system size is larger than the corre-
lation length, which is identical to the cutoff in the radius
of the finite (i.e., non system spanning) clusters. In our
system, however, we do not see such an exponential cutoff
to the size distribution of the finite clusters. Instead, the
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Fig. 4. The size distribution of fires for s0/L
2 = 0.15 and

ρ̄ = 0.454, for the system sizes L = 10, 100, 200, 400, 800 (as
the peaks move from left to right). The circles mark the points
of exact L2 scaling, taking the peak of the L = 800 curve as
reference.
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Fig. 5. Transition from critical to percolation-like behaviour as
the system size L is decreased for the fixed parameter s0 = 200.
The parameter L of the curves are from right to left: L = 1300,
100, 63, 50, 40, 20. The measured mean tree densities are ρ̄ =
0.385, 0.392, 0.402, 0.414, 0.432, 0.577.

curve for L = 800 in Figure 4 appears to obey a power
law from s ' 100 up to the point where the peak begins.
The explanation for this unusual behaviour must lie in the
large temporal fluctuations in the density. The density is
only sometimes so large that the large fires, which have a
size of the order L2/2, occur. At other times, the density
values are different and allow for a broad range of other
fire sizes.

The transition between critical scaling and L2-scaling
can be observed when L is varied for fixed s0, as illustrated
in Figure 5. One can see that the shape of the curves
changes continuously as L is decreased. Clearly, because
of this change in shape, finite-size effects do not manifest
themselves in a scaling behaviour sn(s) ' s1−τC(s/Lµ).
It is impossible to generate a scaling collapse of different
curves, even if their density is close to the critical density.
Furthermore, as mentioned above, the cutoff introduced
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Fig. 6. Comparison of the fire size distribution of a section of
size l = 63 of a larger (L = 600, s0 = 1440) system (solid line)
and a small system with L = 63 (s0 = 200) (dotted line). For
both systems we measured a mean tree density of ρ̄ = 0.401.

by the finite system size always scales as L2, due to the
occurrence of system spanning fires, and not as Lµ, as
expected for conventional critical systems.

For small system sizes, spanning clusters may already
occur for densities below ρ̄c, an effect which is clearly vis-
ible in the curve for L = 63. The formation of peaks due
to finite size effects, was also found in [12].

As mentioned earlier, for conventional critical systems
a system of small size and a small section of a large system
are equivalent. We have argued that this is not true for the
forest-fire model since the mean tree density and the time
interval between fires are different in the two cases. The
next two figures show that also the fire size distributions
are different. In Figure 6 the fire size distribution of a sec-
tion of a large system and a corresponding small system
is shown. The scaling parts and the form of the bumps
near the cutoff are very different. The fire size distribu-
tion of a small section of a large system is broader than
that of a small system. The reason is that a section of a
large system can contain a boundary between a patch of
large tree density and a patch of small tree density. This
boundary can pass through the section in different ways,
and the number of trees in the dense part can take differ-
ent values. Since large fires only burn the dense part, the
size distribution of fires becomes broad.

Figure 7 shows how the fire size distribution changes
when smaller and smaller sections of a large system are
evaluated. In comparison with Figure 5, one sees again
that the fire size distribution of small sections of large
systems is different from that of small systems.

To summarize this subsection, the fire size distribu-
tion in the presence of finite-size effects does not show the
features of finite-size effects in conventional critical sys-
tems. We find a continuous change in the shape of the
fire size distribution and cutoffs that scale as L2, rather
than conventional finite-size scaling. Furthermore, the fire
size distribution in small sections of large systems is dif-
ferent from small systems. Our results for the fire-size

0 1 2 3 4 5
−8

−6

−4

−2

0

lo
g(

s
n(

s)
)

log(s)

Fig. 7. Fire size distribution for systems with L = 800 (dot-
dashed line) and of subsections of this system of size l = 100
(solid line) and l = 20. We used s0/L

2 = 0.001 and measured
the mean tree density ρ̄ ≈ 0.40.

distribution confirm the qualitative transition from a pa-
rameter region unaffected by finite-size effects to a region
dominated by system spanning fires that we found in the
previous subsection.

3.3 Probability distribution of the density

Finally, we studied the temporal fluctuations in the values
of tree density ρ(t) by measuring how often a given value of
ρ occurs within a sufficiently long time series. We denote
by w(ρ)dρ the probability that the tree density lies in
the interval between ρ and ρ + dρ. The quantity w(ρ) is
therefore the probability density for the tree density ρ. We
measured ρ always after the trees were refilled, i.e., after
step (ii). The results show again a qualitative change as
the correlation length becomes smaller than the system
size, reflecting the transition from critical to percolation-
like behaviour.

In Figures 8 to 11 w(ρ) is shown for different val-
ues for L and s0. For large enough and fixed s0/L

2, the
mean tree density increases with increasing system size,
until it reaches its asymptotic value above ρ̄c. For fixed L,
the mean tree density increases with increasing s0. Apart
from this increase in mean tree density, the following other
trends are observed: (a) as the mean density approaches
ρ̄c, the curves for w(ρ) become broader (Fig. 8). This
is because the patches of homogeneous density visible in
Figure 1 become larger with increasing ρ̄, leading to larger
global density fluctuations. (b) As the mean tree density
increases above ρ̄c, the shape of the distribution becomes
asymmetric, with the maximum moving from ρ̄c to the
percolation threshold ρperc ' 0.59 (Fig. 9). The reason
is that for ρ̄ > ρ̄c the patchy structure is replaced by
a more homogeneous (percolation like) structure, where
the largest fires are system spanning and occur for densi-
ties above the percolation threshold. Once the density lies
above the percolation threshold the probability that a sys-
tem spanning fire occurs is very high. This is why densities
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measured mean tree densities are ρ̄ = 0.402 and 0.423. The
inset shows w(ρ) for the test simulation with an exponential
probability distribution for s0. The values of L, and the mean
value of s0 are the same as in the main figure, the measured
mean tree densities are ρ̄ = 0.39 and 0.408.

much higher than the percolation occur seldom, explaining
the rapid decrease of w(ρ) above the percolation thresh-
old. (c) As the system size increases for fixed p = s0/L

2,
there occur peaks in the density distribution which be-
come sharper and more numerous for larger L (Figs. 10
and 11). This can be explained by realizing that the dif-
ference between finite and system spanning fires becomes
more pronounced as L increases. In the limit L→∞, finite
fires do not affect the density at all, while system spanning
fires reduce it to a small value. Subsequent filling events
then increase the density to 1 − exp(−p), 1 − exp(−2p),
1− exp(−3p), etc., until the density is above the percola-
tion threshold and another system spanning fire can occur.
These system spanning fires do not always occur at the
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Fig. 10. w(ρ) for systems with the parameters s0/L
2 = 0.15

and L = 115 (for the solid line), L = 1600 (for the dotted
line), L = 10 (for the dash-dotted line) The w(ρ̄) values for
the L = 10 system are multiplied by 2. The measured mean
tree densities are ρ̄ = 0.454, 0.455, 0.394. The inset shows
w(ρ) for the test simulation with an exponential probabil-
ity distribution for s0. The values of L, and the mean value
of s0 are the same as for the solid and dotted curve in the
main figure, the measured mean tree densities are ρ̄ = 0.425
and 0.428.
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Fig. 11. w(ρ) for systems with the parameters s0/L
2 = 0.20

and L = 100 (for the solid line), 1600 (for the dotted line). The
measured mean tree densities are ρ̄ = 0.474, 0.473.

first instance where the density is above ρperc, since light-
ning might strike and empty a site. Also, the density im-
mediately after a system spanning fire depends slightly on
the density before the fire. Therefore, the series of density
values given above, becomes slightly shifted, depending on
the density just before the last system spanning fire. These
shifted series of peaks, in turn, give rise to further possible
density values above ρperc, leading to an additional series
of peaks, etc. This is the mechanism leading to the fractal
peak structure that emerges as L is increased. For smaller
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L, the effect of small fires leads to a larger width of the
peaks, which can therefore not be resolved when they are
close together.

As mentioned in the introduction, the peaks in w(ρ)
are due to the fact that lightning can strike the sys-
tem only between two filling steps. Had we instead per-
formed our simulations using a small tree growth prob-
ability p and a small lightning probability f , lightning
could strike the system between the growth of any two
trees. However, such a simulation would be very slow.
In order to make sure that our choice of the algorithm
has no other effect on the results apart from the peaks
in w(ρ), we performed a test simulation where s0 is
not the same for each filling step. For each filling step,
we chose s0 randomly from an exponential distribution
P (s0) = (L2p)−1 exp(−s0/(L2p)). Such an exponential
distribution results when lightning can strike the system
between the growth of any two trees with the same prob-
ability. The mean number of trees growing between two
lightning strokes is now smaller than before. The reason is
that the majority of filling steps increase the tree number
by a value smaller than L2p, and that during large filling
events the tree density becomes high and most of the sites
chosen for filling are already occupied. The mean tree den-
sities evaluated according to equation (4) are consequently
slightly smaller than before.

The probability density w(ρ) for the tree density re-
sulting from this modified algorithm is shown in the insets
in Figures 9 and 10. As expected, the peaks have vanished,
while the change in shape from a curve with peak around
0.4 to a curve with peak near 0.6 due to finite-size effects
is the same as before.

4 Conclusion

In this paper, we have studied finite-size effects in the
SOC forest-fire model. As these effects become stronger,
the system rearranges from a structure with patches of
different densities to a more homogeneous structure with
large density fluctuations in time. This rearrangement is
reflected in the structure of the fire size distribution, in
the mean tree density, and in the temporal density fluctu-
ations. Qualitatively similar (although quantitatively dif-
ferent) rearrangements are observed when smaller and
smaller sections of a large SOC system are studied. Due to
these qualitative changes, conventional finite-size scaling
does not hold. Our work thus demonstrates that concepts
from equilibrium critical phenomena cannot be taken over
to the study of SOC systems such as the forest-fire model.
Instead, these nonequilibrium critical systems show gener-
ically new features unknown in equilibrium. As the scal-
ing ansatz equation (2) which is based on a single length
scale ξ ∼ sν0 can only be approximately correct, the true
asymptotic scaling behaviour of the model is still an open
question.

We suggest that the reason for the unconventional be-
haviour of the SOC forest-fire model is the fact that two
qualitatively different types of fires occur: those that burn
down a patch of high tree density of fractal dimension 2,

and those that burn down a tree cluster of a smaller frac-
tal dimension within a region of a tree density below the
percolation threshold. As a consequence, the scaling be-
haviour of the system cannot be characterized using only
one length scale. While the superposition of the two types
of fires creates the impression of simple scaling as long as
finite-size effects are small, the difference between them
becomes clearly visible for smaller system sizes, where sys-
tem spanning fires receive a larger weight. We suggest that
the superposition of the two types of fires is also respon-
sible for the other unconventional features of the SOC
forest-fire model listed in the introduction.

Models related to the present one have been studied
in [8,25] and [7]. In these models, the tree density is glob-
ally conserved by filling exactly the same number of trees
into the system that have been burnt. As long as the den-
sity is below the critical value, these models are equiva-
lent and show the critical behaviour of the SOC forest-fire
model as the critical density is approached from below.
They were introduced for the purpose of studying the SOC
forest-fire model beyond the critical point, i.e. for densi-
ties larger than the critical density ρ̄c. As the density in-
creases beyond the critical density, both models undergo
large-scale rearrangements. In [8,25], where trees are re-
filled only after the end of a fire, the new structure consists
of a finite number of large domains of different density.
In [7], where each tree is refilled into the system immedi-
ately after it is burnt, the new structure has a continuously
burning fire, and resembles the forest-fire model without
lightning introduced earlier by Bak, Chen, and Tang [26],
which shows spiral-shaped fire fronts [27]. In both these
models, the dynamics in the restructured state are domi-
nated by large fires burning forests of a fractal dimension
two, similarly to the restructuring due to finite-size effects
reported in this paper.

Let us conclude by noting that it is unclear whether
the behaviour in higher dimensions resembles that in
two dimensions. Clearly, as long as the “patchy” struc-
ture with two qualitatively different types of fire occurs,
mean-field theory which neglects all spatial structure [17–
19] cannot apply, and the system must be below its up-
per critical dimension. The recent paper by Bröker and
Grassberger [28] on the forest-fire model without lightning
indicates that unusual scaling behaviour can occur also in
3- and 4-dimensional forest-fire models. If 6 is the upper
critical dimension of the forest-fire model, as suggested
in [3,17,18], then the scaling behaviour of the forest-fire
model should be conventional above 6 dimensions.
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22. S. Lübeck, K.D. Usadel, Phys. Rev. E 55, 4095 (1997).
23. A. Chessa, H.E. Stanley, A. Vespignani, S. Zapperi, Phys.

Rev. E 59, R12 (1999).
24. D. Stauffer, A. Aharony, Introduction to Percolation The-

ory (Taylor and Francis, London, 1992).
25. S. Clar, B. Drossel, K. Schenk, F. Schwabl, Phys. Rev. E

56, 2467 (1997).
26. P. Bak, K. Chen, C. Tang, Phys. Lett. A 147, 297 (1990).
27. P. Grassberger, H. Kantz, J. Stat. Phys. 63, 685 (1991);

W. Moßner, B. Drossel, F. Schwabl, Physica A 190, 205
(1992).
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